达到效果
实现思路
实现难点
1、折现变曲线
2、镜头朝向不受控
3、镜头位置绑定不受控
4、镜头抖动
最终实现方法
方法一:镜头沿线推进
方法二:使用tween动画
方法比较
其他方法
方法一:绘制一条折线+animate镜头推进
方法二:绘制多条线段+animate镜头推进
方法三:绘制多条线段+tween动画变化镜头
方法四:优化方法一,绘制一条折线+animate镜头推进
达到效果指定一条折线路径,镜头沿着路径向前移动,类似第一视角走在当前路径上。
实现思路很简单画一条折线路径,将镜头位置动态绑定在当前路径上,同时设置镜头朝向路径正前方。
实现难点 1、折现变曲线画一条折线路径,通常将每一个转折点标出来画出的THREE.Line,会变成曲线。
难点解答:
1.1、以转折点分隔,一段一段的直线来画,上一个线段的终点是下一个线段的起点。
1.2、画一条折线,在转折点处,通过多加一个点,构成一个特别细微的短弧线。
2、镜头朝向不受控对于controls绑定的camera,修改camera的lookAt和rotation并无反应。
难点解答:
相机观察方向camera.lookAt设置无效需要设置controls.target
3、镜头位置绑定不受控对于controls绑定的camera,动态修改camera的位置总存在一定错位。
难点解答:
苍天啊,这个问题纠结我好久,怎么设置都不对,即便参考上一个问题控制controls.object.position也不对。
结果这是一个假的难点,镜头位置是受控的,感觉不受控是因为,设置了相机距离原点的最近距离!!! 导致转弯时距离太近镜头会往回退着转弯,碰到旁边的东西啊,哭唧唧。
// 设置相机距离原点的最近距离 即可控制放大限值
// controls.minDistance = 4
// 设置相机距离原点的最远距离 即可控制缩小限值
controls.maxDistance = 40
4、镜头抖动
镜头抖动,怀疑是设置位置和朝向时坐标被四舍五入时,导致一会上一会下一会左一会右的抖动。
难点解答:
开始以为是我整个场景太小了,放大场景,拉长折线,拉远相机,并没有什么用。
最后发现是在animate()动画中设置相机位置,y坐标加了0.01:
controls.object.position.set(testList[testIndex].x, testList[testIndex].y + 0.01, testList[testIndex].z)
相机位置坐标和相机朝向坐标不在同一平面,导致的抖动,将+0.01去掉就正常了。
controls.object.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
最终实现方法
在此通过两个相机,先观察相机cameraTest的移动路径和转向,再切换成原始相机camera。
公共代码如下:
// 外层相机,原始相机
let camera = null
// 内层相机和相机辅助线
let cameraTest = null
let cameraHelper = null
// 控制器
let controls = null
// 折线点的集合和索引
let testList = []
let testIndex = 0
initCamera () {
// 原始相机
camera = new THREE.PerspectiveCamera(45, div3D.clientWidth / div3D.clientHeight, 0.1, 1000)
camera.position.set(16, 6, 10)
// scene.add(camera)
// camera.lookAt(new THREE.Vector3(0, 0, 0))
// 设置第二个相机
cameraTest = new THREE.PerspectiveCamera(45, div3D.clientWidth / div3D.clientHeight, 0.1, 1000)
cameraTest.position.set(0, 0.6, 0)
cameraTest.lookAt(new THREE.Vector3(0, 0, 0))
cameraTest.rotation.x = 0
// 照相机帮助线
cameraHelper = new THREE.CameraHelper(cameraTest)
scene.add(cameraTest)
scene.add(cameraHelper)
}
// 初始化控制器
initControls () {
controls = new OrbitControls(camera, renderer.domElement)
}
方法一:镜头沿线推进
inspectCurveList () {
let curve = new THREE.CatmullRomCurve3([
new THREE.Vector3(2.9, 0.6, 7),
new THREE.Vector3(2.9, 0.6, 1.6),
new THREE.Vector3(2.89, 0.6, 1.6), // 用于直角转折
new THREE.Vector3(2.2, 0.6, 1.6),
new THREE.Vector3(2.2, 0.6, 1.59), // 用于直角转折
new THREE.Vector3(2.2, 0.6, -5),
new THREE.Vector3(2.21, 0.6, -5), // 用于直角转折
new THREE.Vector3(8, 0.6, -5),
new THREE.Vector3(8, 0.6, -5.01), // 用于直角转折
new THREE.Vector3(8, 0.6, -17),
new THREE.Vector3(7.99, 0.6, -17), // 用于直角转折
new THREE.Vector3(-1, 0.6, -17),
// new THREE.Vector3(-2, 0.6, -17.01), // 用于直角转折
new THREE.Vector3(-3, 0.6, -20.4),
new THREE.Vector3(-2, 0.6, 5)
])
let geometry = new THREE.Geometry()
let gap = 1000
for (let i = 0; i < gap; i++) {
let index = i / gap
let point = curve.getPointAt(index)
let position = point.clone()
curveList.push(position)
geometry.vertices.push(position)
}
// geometry.vertices = curve.getPoints(500)
// curveList = geometry.vertices
// let material = new THREE.LineBasicMaterial({color: 0x3cf0fa})
// let line = new THREE.Line(geometry, material) // 连成线
// line.name = 'switchInspectLine'
// scene.add(line) // 加入到场景中
}
// 模仿管道的镜头推进
if (curveList.length !== 0) {
if (curveIndex < curveList.length - 20) {
// 推进里层相机
/* cameraTest.position.set(curveList[curveIndex].x, curveList[curveIndex].y, curveList[curveIndex].z)
controls = new OrbitControls(cameraTest, labelRenderer.domElement) */
// 推进外层相机
// camera.position.set(curveList[curveIndex].x, curveList[curveIndex].y + 1, curveList[curveIndex].z)
controls.object.position.set(curveList[curveIndex].x, curveList[curveIndex].y, curveList[curveIndex].z)
controls.target = curveList[curveIndex + 20]
// controls.target = new THREE.Vector3(curveList[curveIndex + 2].x, curveList[curveIndex + 2].y, curveList[curveIndex + 2].z)
curveIndex += 1
} else {
curveList = []
curveIndex = 0
this.inspectSwitch = false
this.addRoomLabel()
this.removeLabel()
// 移除场景中的线
// let removeLine = scene.getObjectByName('switchInspectLine')
// if (removeLine !== undefined) {
// scene.remove(removeLine)
// }
// 还原镜头位置
this.animateCamera({x: 16, y: 6, z: 10}, {x: 0, y: 0, z: 0})
}
}
方法二:使用tween动画
inspectTween () {
let wayPoints = [
{
point: {x: 2.9, y: 0.6, z: 1.6},
camera: {x: 2.9, y: 0.6, z: 7},
time: 3000
},
{
point: {x: 2.2, y: 0.6, z: 1.6},
camera: {x: 2.9, y: 0.6, z: 1.6},
time: 5000
},
{
point: {x: 2.2, y: 0.6, z: -5},
camera: {x: 2.2, y: 0.6, z: 1.6},
time: 2000
},
{
point: {x: 8, y: 0.6, z: -5},
camera: {x: 2.2, y: 0.6, z: -5},
time: 6000
},
{
point: {x: 8, y: 0.6, z: -17},
camera: {x: 8, y: 0.6, z: -5},
time: 3000
},
{
point: {x: -2, y: 0.6, z: -17},
camera: {x: 8, y: 0.6, z: -17},
time: 3000
},
{
point: {x: -2, y: 0.6, z: -20.4},
camera: {x: -2, y: 0.6, z: -17},
time: 3000
},
{
point: {x: -2, y: 0.6, z: 5},
camera: {x: -3, y: 0.6, z: -17},
time: 3000
},
// {
// point: {x: -2, y: 0.6, z: 5},
// camera: {x: -2, y: 0.6, z: -20.4}
// },
{
point: {x: 0, y: 0, z: 0},
camera: {x: -2, y: 0.6, z: 5},
time: 3000
}
]
this.animateInspect(wayPoints, 0)
}
animateInspect (point, k) {
let self = this
let time = 3000
if (point[k].time) {
time = point[k].time
}
let count = point.length
let target = point[k].point
let position = point[k].camera
let tween = new TWEEN.Tween({
px: camera.position.x, // 起始相机位置x
py: camera.position.y, // 起始相机位置y
pz: camera.position.z, // 起始相机位置z
tx: controls.target.x, // 控制点的中心点x 起始目标位置x
ty: controls.target.y, // 控制点的中心点y 起始目标位置y
tz: controls.target.z // 控制点的中心点z 起始目标位置z
})
tween.to({
px: position.x,
py: position.y,
pz: position.z,
tx: target.x,
ty: target.y,
tz: target.z
}, time)
tween.onUpdate(function () {
camera.position.x = this.px
camera.position.y = this.py
camera.position.z = this.pz
controls.target.x = this.tx
controls.target.y = this.ty
controls.target.z = this.tz
// controls.update()
})
tween.onComplete(function () {
// controls.enabled = true
if (self.inspectSwitch && k < count - 1) {
self.animateInspect(point, k + 1)
} else {
self.inspectSwitch = false
self.addRoomLabel()
self.removeLabel()
}
// callBack && callBack()
})
// tween.easing(TWEEN.Easing.Cubic.InOut)
tween.start()
},
方法比较
方法一:镜头控制简单,但是不够平滑。
方法二:镜头控制麻烦,要指定当前点和目标点,镜头切换平滑但不严格受控。
个人喜欢方法二,只要找好了线路上的控制点,动画效果更佳更容易控制每段动画的时间。
其他方法过程中的使用过的其他方法,仅做记录用。
方法一:绘制一条折线+animate镜头推进// 获取折线点数组
testInspect () {
// 描折线点,为了能使一条折线能直角转弯,特添加“用于直角转折”的辅助点,尝试将所有标为“用于直角转折”的点去掉,折线马上变曲线。
let curve = new THREE.CatmullRomCurve3([
new THREE.Vector3(2.9, 0.6, 7),
new THREE.Vector3(2.9, 0.6, 1.6),
new THREE.Vector3(2.89, 0.6, 1.6), // 用于直角转折
new THREE.Vector3(2.2, 0.6, 1.6),
new THREE.Vector3(2.2, 0.6, 1.59), // 用于直角转折
new THREE.Vector3(2.2, 0.6, -5),
new THREE.Vector3(2.21, 0.6, -5), // 用于直角转折
new THREE.Vector3(8, 0.6, -5),
new THREE.Vector3(8, 0.6, -5.01), // 用于直角转折
new THREE.Vector3(8, 0.6, -17),
new THREE.Vector3(7.99, 0.6, -17), // 用于直角转折
new THREE.Vector3(-2, 0.6, -17),
new THREE.Vector3(-2, 0.6, -17.01), // 用于直角转折
new THREE.Vector3(-2, 0.6, -20.4),
new THREE.Vector3(-2, 0.6, 5),
])
let material = new THREE.LineBasicMaterial({color: 0x3cf0fa})
let geometry = new THREE.Geometry()
geometry.vertices = curve.getPoints(1500)
let line = new THREE.Line(geometry, material) // 连成线
scene.add(line) // 加入到场景中
testList = geometry.vertices
}
// 场景动画-推进相机
animate () {
// 模仿管道的镜头推进
if (testList.length !== 0) {
if (testIndex < testList.length - 2) {
// 推进里层相机
// cameraTest.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
// controls = new OrbitControls(cameraTest, labelRenderer.domElement)
// controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
// testIndex += 1
// 推进外层相机
camera.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
testIndex += 1
} else {
testList = []
testIndex = 0
}
}
}
说明:
推进里层相机,相机移动和转向正常,且在直角转弯处,镜头转动>90°再切回90°;
推进外层相机,镜头突然开始乱切(因为设置了最近距离),且在直角转弯处,镜头转动>90°再切回90°。
方法二:绘制多条线段+animate镜头推进// 获取折线点数组
testInspect () {
let points = [ [2.9, 7],
[2.9, 1.6],
[2.2, 1.6],
[2.2, -5],
[8, -5],
[8, -17],
[-2, -17],
[-2, -20.4],
[-2, 5]
]
testList = this.linePointList(points, 0.6)
}
linePointList (xz, y) {
let allPoint = []
for (let i = 0; i < xz.length - 1; i++) {
if (xz[i][0] === xz[i + 1][0]) {
let gap = (xz[i][1] - xz[i + 1][1]) / 100
for (let j = 0; j < 100; j++) {
allPoint.push(new THREE.Vector3(xz[i][0], y, xz[i][1] - gap * j))
}
} else {
let gap = (xz[i][0] - xz[i + 1][0]) / 100
for (let j = 0; j < 100; j++) {
allPoint.push(new THREE.Vector3(xz[i][0] - gap * j, y, xz[i][1]))
}
}
}
return allPoint
}
// 场景动画-推进相机
animate () {
// 模仿管道的镜头推进
if (testList.length !== 0) {
if (testIndex < testList.length - 2) {
// 推进里层相机
// cameraTest.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
// controls = new OrbitControls(cameraTest, labelRenderer.domElement)
// controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
// testIndex += 1
// 推进外层相机
camera.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
testIndex += 1
} else {
testList = []
testIndex = 0
}
}
}
说明:
推进里层相机,相机移动和转向正常,直角转弯处突兀,因为是多个线段拼接出来的点;
推进外层相机,相机移动有些许错位(因为设置了最近距离),相机转向正常,但是直角转弯处突兀,因为是多个线段拼接出来的点。
方法三:绘制多条线段+tween动画变化镜头// 获取折线点数组
testInspect () {
let points = [
[2.9, 7],
[2.9, 1.6],
[2.2, 1.6],
[2.2, -5],
[8, -5],
[8, -17],
[-2, -17],
[-2, -20.4],
[-2, 5]
]
this.tweenCameraTest(points, 0) // tween动画-控制里层相机
// this.tweenCamera(points, 0) // tween动画-控制外层相机
}
// tween动画-控制里层相机
tweenCameraTest (point, k) {
let self = this
let count = point.length
let derection = 0
if (cameraTest.position.x === point[k][0]) {
// x相同
if (cameraTest.position.z - point[k][1] > 0) {
derection = 0
} else {
derection = Math.PI
}
} else {
// z相同
if (cameraTest.position.x - point[k][0] > 0) {
derection = Math.PI / 2
} else {
derection = - Math.PI / 2
}
}
cameraTest.rotation.y = derection
let tween = new TWEEN.Tween({
px: cameraTest.position.x, // 起始相机位置x
py: cameraTest.position.y, // 起始相机位置y
pz: cameraTest.position.z // 起始相机位置z
})
tween.to({
px: point[k][0],
py: 0.6,
pz: point[k][1]
}, 3000)
tween.onUpdate(function () {
cameraTest.position.x = this.px
cameraTest.position.y = this.py
cameraTest.position.z = this.pz
})
tween.onComplete(function () {
if (k < count - 1) {
self.tweenCameraTest(point, k + 1)
} else {
console.log('结束了!!!!!!')
}
// callBack && callBack()
})
// tween.easing(TWEEN.Easing.Cubic.InOut)
tween.start()
}
// tween动画-控制外层相机
tweenCamera (point, k) {
let self = this
let count = point.length
let derection = 0
if (camera.position.x === point[k][0]) {
// x相同
if (camera.position.z - point[k][1] > 0) {
derection = 0
} else {
derection = Math.PI
}
} else {
// z相同
if (camera.position.x - point[k][0] > 0) {
derection = Math.PI / 2
} else {
derection = - Math.PI / 2
}
}
camera.rotation.y = derection
let tween = new TWEEN.Tween({
px: camera.position.x, // 起始相机位置x
py: camera.position.y, // 起始相机位置y
pz: camera.position.z // 起始相机位置z
})
tween.to({
px: point[k][0],
py: 0.6,
pz: point[k][1]
}, 3000)
tween.onUpdate(function () {
camera.position.x = this.px
camera.position.y = this.py
camera.position.z = this.pz
})
tween.onComplete(function () {
if (k < count - 1) {
self.tweenCamera(point, k + 1)
} else {
console.log('结束了!!!!!!')
}
// callBack && callBack()
})
// tween.easing(TWEEN.Easing.Cubic.InOut)
tween.start()
}
说明:
控制里层相机使用tweenCameraTest()方法,相机移动正常,通过rotation.y控制直接转向,转弯时略突兀因为没有动画控制rotation.y转动;
控制外层相机使用tweenCamera()方法,相机移动有些许错位(因为设置了最近距离),相机转向完全不受控,似乎始终看向坐标原点。
方法四:优化方法一,绘制一条折线+animate镜头推进// 获取折线点数组
testInspect () {
// 描折线点,为了能使一条折线能直角转弯,特添加“用于直角转折”的辅助点,尝试将所有标为“用于直角转折”的点去掉,折线马上变曲线。
let curve = new THREE.CatmullRomCurve3([
new THREE.Vector3(2.9, 0.6, 7),
new THREE.Vector3(2.9, 0.6, 1.6),
new THREE.Vector3(2.89, 0.6, 1.6), // 用于直角转折
new THREE.Vector3(2.2, 0.6, 1.6),
new THREE.Vector3(2.2, 0.6, 1.59), // 用于直角转折
new THREE.Vector3(2.2, 0.6, -5),
new THREE.Vector3(2.21, 0.6, -5), // 用于直角转折
new THREE.Vector3(8, 0.6, -5),
new THREE.Vector3(8, 0.6, -5.01), // 用于直角转折
new THREE.Vector3(8, 0.6, -17),
new THREE.Vector3(7.99, 0.6, -17), // 用于直角转折
new THREE.Vector3(-2, 0.6, -17),
new THREE.Vector3(-2, 0.6, -17.01), // 用于直角转折
new THREE.Vector3(-2, 0.6, -20.4),
new THREE.Vector3(-2, 0.6, 5),
])
let material = new THREE.LineBasicMaterial({color: 0x3cf0fa})
let geometry = new THREE.Geometry()
let gap = 500
for (let i = 0; i < gap; i++) {
let index = i / gap
let point = curve.getPointAt(index)
let position = point.clone()
testList.push(position) // 通过此方法获取点比curve.getPoints(1500)更好,不信你试试,用getPoints获取,镜头会有明显的俯视效果不知为何。
geometry.vertices.push(position)
}
let line = new THREE.Line(geometry, material) // 连成线
scene.add(line) // 加入到场景中
}
// 场景动画-推进外层相机
animate () {
// 模仿管道的镜头推进
if (testList.length !== 0) {
if (testIndex < testList.length - 2) {
// 推进里层相机
// cameraTest.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
// controls = new OrbitControls(cameraTest, labelRenderer.domElement)
// 推进外层相机
// camera.position.set(testList[testIndex].x, testList[testIndex].y + 0.01, testList[testIndex].z)
controls.object.position.set(testList[testIndex].x, testList[testIndex].y + 0.01, testList[testIndex].z) // 稍微讲相机位置上移,就不会出现似乎乱切镜头穿过旁边物体的效果。
controls.target = testList[testIndex + 2]
// controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
testIndex += 1
} else {
testList = []
testIndex = 0
}
}
}
说明:
解决了,直角转弯处,镜头转动>90°再切回90°的问题。
解决了,推进外层相机镜头乱切的问题。
但是,相机移动在转弯时有明显的往后闪(因为设置了最近距离),并不是严格跟随折线前进。
以上就是three.js镜头追踪的移动效果实例的详细内容,更多关于three.js镜头追踪移动的资料请关注易知道(ezd.cc)其它相关文章!