1. 前言
2. 设计思路
3. 构建思路
4. 编码实现
4.1 使用优先队列
4.2 使用一维数组
5. 总结
1. 前言什么是哈夫曼树?
把权值不同的n
个结点构造成一棵二叉树,如果此树满足以下几个条件:
此 n 个结点为二叉树的叶结点 。
权值较大的结点离根结点较近,权值较小的结点离根结点较远。
该树的带权路径长度是所有可能构建的二叉树中最小的。
则称符合上述条件的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。
构建哈夫曼树的目的是什么?
用来解决在通信系统中如何使用最少的二进制位编码字符信息。
本文将和大家聊聊哈夫曼树的设计思想以及构建过程。
2. 设计思路哈夫曼树产生的背景:
在通信系统中传递一串字符串文本时,需要对这一串字符串文本信息进行二进制编码。编码时如何保证所用到的bit
位是最少的,或保证整个编码后的传输长度最短。
现假设字符串由ABCD 4
个字符组成,最直接的想法是使用 2
个bit
位进行等长编码,如下表格所示:
A | 00 |
B | 01 |
C | 10 |
D | 11 |
传输ABCD
字符串一次时,所需bit
为 2
位,当通信次数达到 n
次时,则需要的总传输长度为 n*2
。当字符串的传输次数为 1000
次时,所需要传输的总长度为 2000
个bit
。
使用等长编码时,如果传输的报文中有 26
个不同字符时,因需要对每一个字符进行编码,至少需要 5
位bit
。
但在实际应用中,各个字符的出现频率或使用次数是不相同的,如A、B、C
的使用频率远远高于X、Y、Z
。使用等长编码特点是无论字符出现的频率差异有多大,每一个字符都得使用相同的bit
位。
哈夫曼的设计思想:
对字符串信息进行编码设计时,让使用频率高的字符使用短码
,使用频率低的用长码
,以优化整个信息编码的长度。
基于这种简单、朴素的想法设计出来的编码也称为不等长编码
。
哈夫曼不等长编码的具体思路如下:
如现在要发送仅由A、B、C、D 4
个字符组成的报文信息 ,A
字符在信息中占比为 50%
,B
的占比是 20%
,C
的占比是 15%
, D
的 占比是10%
。
不等长编码的朴实思想是字符
的占比越大,所用的bit
位就少,占比越小,所用bit
位越多。如下为每一个字符使用的bit
位数:
A
使用 1
位bit
编码。
B
使用 2
位 bit
编码。
C
使用 3
位 bit
编码。
D
使用 3
位 bit
编码。
具体编码如下表格所示:
A | 0.5 | 0 |
B | 0.2 | 10 |
C | 0.15 | 110 |
D | 0.1 | 111 |
如此编码后,是否真的比前面的等长编码所使用的总bit
位要少?
计算结果=0.5*1+0.2*2+0.15*3+0.1*3=1.65
。
先计算每一个字符在报文信息中的占比乘以字符所使用的bit
位。
然后对上述每一个字符计算后的结果进行相加。
显然,编码ABCD
只需要 1.65
个bit
,比等长编码用到的2 个 bit
位要少 。当传输信息量为 1000
时,总共所需要的bit
位=1.65*1000=1650 bit
。
哈夫曼编码和哈夫曼树有什么关系?
因为字符的编码是通过构建一棵自下向上的二叉树推导出来的,如下图所示:
哈夫曼树的特点:
信息结点都是叶子结点。
叶子结点具有权值。如上二叉树,A
结点权值为0.5
,B
结点权值为0.2
,C
结点权值为0.15
,D
结点权值为 0.1
。
哈夫曼编码为不等长前缀编码(即要求一个字符的编码不能是另一个字符编码的前缀)。
从根结点开始,为左右分支分别编号0
和1
,然后顺序连接从根结点到叶结点所有分支上的编号得到字符的编码。
相信大家对哈夫曼树有了一个大概了解,至于如何通过构建哈夫曼树,咱们继续再聊。
3. 构建思路在构建哈夫曼树之前,先了解几个相关概念:
路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1
,则从根结点到第L
层结点的路径长度为L-1
。
结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL
。
如有权值为{3,4,9,15}
的 4
个结点,则可构造出不同的二叉树,其带权路径长度也会不同。如下 3
种二叉树中,B
的树带权路径长度是最小的。
哈夫曼树
的构建过程就是要保证树的带权路径长度
最小。
那么,如何构建二叉树,才能保证构建出来的二叉树的带权路径长度最小?
如有一字符串信息由 ABCDEFGH 8个字符组成,每一个字符的权值分别为{3,6,12,9,4,8,21,22}
,构建最优哈夫曼树的流程:
1.以每一个结点为根结点构建一个单根二叉树,二叉树的左右子结点为空,根结点的权值为每个结点的权值。并存储到一个树集合中。
2.从树集合中选择根结点的权值最小的 2
个树。重新构建一棵新二叉树,让刚选择出来的2
棵树的根结点成为这棵新树的左右子结点,新树的根结点的权值为 2
个左右子结点权值的和。构建完成后从树集合中删除原来 2
个结点,并把新二叉树放入树集合中。
如下图所示。权值为 3
和4
的结点为新二叉树的左右子结点,新树根结点的权值为7
。
3.重复第二步,直到树集合中只有一个根结点为止。
当集合中只存在一个根结点时,停止构建,并且为最后生成树的每一个非叶子结点的左结点分支标注0
,右结点分支标注1
。如下图所示:
通过上述从下向上
的思想构建出来的二叉树,可以保证权值较小的结点离根结点较远,权值较大的结点离根结点较近。最终二叉树的带权路径长度: WPL=(3+4)*5+6*4+(8+9+12)*3+(21+22)*2=232
。并且此树的带权路径长度是所有可能构建出来的二叉树中最小的。
上述的构建思想即为哈夫曼树设计思想,不同权值的字符编码就是结点路径上0
和1
的顺序组合。如下表所述,权值越大,其编码越小,权值越小,其编码越大。其编码长度即从根结点到此叶结点的路径长度。
A | 3 | 11110 |
B | 6 | 1110 |
C | 12 | 110 |
D | 9 | 001 |
E | 4 | 11111 |
F | 8 | 000 |
G | 21 | 01 |
H | 22 | 10 |
可以把权值不同的结点分别存储在优先队列(Priority Queue)中,并且给与权重较低的结点较高的优先级(Priority)。
具体实现哈夫曼树算法如下:
1.把n
个结点存储到优先队列中,则n
个节点都有一个优先权Pi
。这里是权值越小,优先权越高。
2.如果队列内的节点数>1
,则:
从队列中移除两个最小的结点。
产生一个新节点,此节点为队列中移除节点的父节点,且此节点的权重值为两节点之权值之和,把新结点加入队列中。
重复上述过程,最后留在优先队列里的结点为哈夫曼树的根节点(root
)。
完整代码:
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
//树结点
struct TreeNode {
//结点权值
float weight;
//左结点
TreeNode *lelfChild;
//右结点
TreeNode *rightChild;
//初始化
TreeNode(float w) {
weight=w;
lelfChild=NULL;
rightChild=NULL;
}
};
//为优先队列提供比较函数
struct comp {
bool operator() (TreeNode * a, TreeNode * b) {
//由大到小排列
return a->weight > b->weight;
}
};
//哈夫曼树类
class HfmTree {
private:
//优先队列容器
priority_queue<TreeNode *,vector<TreeNode *>,comp> hfmQueue;
public:
//构造函数,构建单根结点树
HfmTree(int weights[8]) {
for(int i=0; i<8; i++) {
//创建不同权值的单根树
TreeNode *tn=new TreeNode(weights[i]);
hfmQueue.push(tn);
}
}
//显示队列中的最一个结点
TreeNode* showHfmRoot() {
TreeNode *tn;
while(!hfmQueue.empty()) {
tn= hfmQueue.top();
hfmQueue.pop();
}
return tn;
}
//构建哈夫曼树
void create() {
//重复直到队列中只有一个结点
while(hfmQueue.size()!=1) {
//从优先队列中找到权值最小的 2 个单根树
TreeNode *minFirst=hfmQueue.top();
hfmQueue.pop();
TreeNode *minSecond=hfmQueue.top();
hfmQueue.pop();
//创建新的二叉树
TreeNode *newRoot=new TreeNode(minFirst->weight+minSecond->weight);
newRoot->lelfChild=minFirst;
newRoot->rightChild=minSecond;
//新二叉树放入队列中
hfmQueue.push(newRoot);
}
}
//按前序遍历哈夫曼树的所有结点
void showHfmTree(TreeNode *root) {
if(root!=NULL) {
cout<<root->weight<<endl;
showHfmTree(root->lelfChild);
showHfmTree(root->rightChild);
}
}
//析构函数
~HfmTree() {
//省略
}
};
//测试
int main(int argc, char** argv) {
//不同权值的结点
int weights[8]= {3,6,12,9,4,8,21,22};
//调用构造函数
HfmTree hfmTree(weights);
//创建哈夫曼树
hfmTree.create();
//前序方式显示哈夫曼树
TreeNode *root= hfmTree.showHfmRoot();
hfmTree.showHfmTree(root);
return 0;
}
显示结果:
上述输出结果,和前文的演示结果是一样的。
此算法的时间复杂度为O(nlogn)
。因为有n
个结点,所以树总共有2n-1
个节点,使用优先队列每个循环须O(log n)
。
除了上文的使用优先队列之外,还可以使用一维数组的存储方式实现。
在哈夫曼树中,叶子结点有 n
个,非叶子结点有 n-1
个,使用数组保存哈夫曼树上所的结点需要 2n-1
个存储空间 。其算法思路和前文使用队列的思路差不多。直接上代码:
#include <iostream>
using namespace std;
//叶结点数量
const unsigned int n=8;
//一维数组长度
const unsigned int m= 2*n -1;
//树结点
struct TreeNode {
//权值
float weight;
//父结点
int parent;
//左结点
int leftChild;
//右结点
int rightChild;
};
class HuffmanTree {
public:
//创建一维数组
TreeNode hfmNodes[m+1];
public:
//构造函数
HuffmanTree(int weights[8]);
~HuffmanTree( ) {
}
void findMinNode(int k, int &s1, int &s2);
void showInfo() {
for(int i=0; i<m; i++) {
cout<<hfmNodes[i].weight<<endl;
}
}
};
HuffmanTree::HuffmanTree(int weights[8]) {
//前2 个权值最小的结点
int firstMin;
int secondMin;
//初始化数组中的结点
for(int i = 1; i <= m; i++) {
hfmNodes[i].weight = 0;
hfmNodes[i].parent = -1;
hfmNodes[i].leftChild = -1;
hfmNodes[i].rightChild = -1;
}
//前 n 个是叶结点
for(int i = 1; i <= n; i++)
hfmNodes[i].weight=weights[i-1];
for(int i = n + 1; i <=m; i++) {
this->findMinNode(i-1, firstMin, secondMin);
hfmNodes[firstMin].parent = i;
hfmNodes[secondMin].parent = i;
hfmNodes[i].leftChild = firstMin;
hfmNodes[i].rightChild = secondMin;
hfmNodes[i].weight = hfmNodes[firstMin].weight + hfmNodes[secondMin].weight;
}
}
void HuffmanTree::findMinNode(int k, int & firstMin, int & secondMin) {
hfmNodes[0].weight = 32767;
firstMin=secondMin=0;
for(int i=1; i<=k; i++) {
if(hfmNodes[i].weight!=0 && hfmNodes[i].parent==-1) {
if(hfmNodes[i].weight < hfmNodes[firstMin].weight) {
//如果有比第一小还要小的,则原来的第一小变成第二小
secondMin = firstMin;
//新的第一小
firstMin = i;
} else if(hfmNodes[i].weight < hfmNodes[secondMin].weight)
//如果仅比第二小的小
secondMin = i;
}
}
}
int main() {
int weights[8]= {3,6,12,9,4,8,21,22};
HuffmanTree huffmanTree(weights);
huffmanTree.showInfo();
return 1;
}
测试结果:
5. 总结哈夫曼树是二叉树的应用之一,掌握哈夫曼树的建立和编码方法对解决实际问题有很大帮助。
以上就是漫谈C++哈夫曼树的原理及实现的详细内容,更多关于C++哈夫曼树的资料请关注易知道(ezd.cc)其它相关文章!