基于Python实现nc批量转tif格式

由于做项目需要运用到netCDF格式的气象数据,而ArcGIS中需要用栅格影像进行处理,对于较多的文件,ArcGIS一个个手动转换过于繁琐,因此我们采用Python进行转换,当然也可以采用matlab进行转换。

首先需要安装下面几个库:

import os import netCDF4 as nc import numpy as np from osgeo import gdal, osr, ogr import glob

我们可以在下面网址中寻找对应python安装版本的安装包,下载后,在pycharm控制台中直接安装即可。例如pip install netCDF4-1.5.8-cp39-cp39-

win_amd64.whl

https://www.lfd.uci.edu/~gohlke/pythonlibs/

安装之后即可进行转换:

def nc2tif(data, Output_folder): tmp_data = nc.Dataset(data) # 利用.Dataset()方法读取nc数据 print('tmp_data', tmp_data) Lat_data = tmp_data.variables['lat'][:] Lon_data = tmp_data.variables['lon'][:] # print(Lat_data) # print(Lon_data) tmp_arr = np.asarray(tmp_data.variables['temp']) # 影像的左上角&右下角坐标 Lonmin, Latmax, Lonmax, Latmin = [Lon_data.min(), Lat_data.max(), Lon_data.max(), Lat_data.min()] # print(Lonmin, Latmax, Lonmax, Latmin) # 分辨率计算 Num_lat = len(Lat_data) # 5146 Num_lon = len(Lon_data) # 7849 Lat_res = (Latmax - Latmin) / (float(Num_lat) - 1) Lon_res = (Lonmax - Lonmin) / (float(Num_lon) - 1) # print(Num_lat, Num_lon) # print(Lat_res, Lon_res) for i in range(len(tmp_arr[:])): # i=0,1,2,3,4,5,6,7,8,9,... # 创建tif文件 driver = gdal.GetDriverByName('GTiff') out_tif_name = Output_folder + '\\' + data.split('\\')[-1].split('.')[0] + '_' + str(i + 1) + '.tif' out_tif = driver.Create(out_tif_name, Num_lon, Num_lat, 1, gdal.GDT_Int16) # 设置影像的显示范围 # Lat_re前需要添加负号 geotransform = (Lonmin, Lon_res, 0.0, Latmax, 0.0, -Lat_res) out_tif.SetGeoTransform(geotransform) # 定义投影 prj = osr.SpatialReference() prj.ImportFromEPSG(4326) # WGS84 out_tif.SetProjection(prj.ExportToWkt()) # 数据导出 out_tif.GetRasterBand(1).WriteArray(tmp_arr[i]) # 将数据写入内存,此时没有写入到硬盘 out_tif.FlushCache() # 将数据写入到硬盘 out_tif = None # 关闭tif文件 def main(): Input_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\Data_forcing_01yr_010deg\\" # Input_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\Data_forcing_01mo_010deg\\" Output_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\tif\\" # 读取所有数据 data_list = glob.glob(os.path.join(Input_folder + '*.nc')) print(data_list) for i in range(len(data_list)): data = data_list[i] nc2tif(data, Output_folder) print(data + '转tif成功')

值得注意的是,tmp_arr = np.asarray(tmp_data.variables['temp'])中的temp可以根据需要转换的波段进行选择,我们可以在读取数据之后print一下,找到对应的波段进行替换即可。如下图中我们应该选择的就是temp。

完成上述步骤即可得到所需的tif图像:

在上述代码中,经过处理的影像是倒置的,可能是处理过程中仿射矩阵读写错误导致的。因此我们可以在写入影像的时候,进行影像的垂直镜像操作即可:WriteArray(ndvi_arr_float[i][::-1]) 

def NC_to_tiffs(data, Output_folder): nc_data_obj = nc.Dataset(data) Lon = nc_data_obj.variables['lon'][:] Lat = nc_data_obj.variables['lat'][:] ndvi_arr = np.asarray(nc_data_obj.variables['temp']) ndvi_arr_float = ndvi_arr.astype(float) / 10000 之间 # 影像的左上角和右下角坐标 LonMin, LatMax, LonMax, LatMin = [Lon.min(), Lat.max(), Lon.max(), Lat.min()] # 分辨率计算 N_Lat = len(Lat) N_Lon = len(Lon) Lon_Res = (LonMax - LonMin) / (float(N_Lon) - 1) Lat_Res = (LatMax - LatMin) / (float(N_Lat) - 1) for i in range(len(ndvi_arr[:])): driver = gdal.GetDriverByName('GTiff') out_tif_name = Output_folder + '\\' + data.split('\\')[-1].split('.')[0] + '_' + str(i + 1) + '.tif' out_tif = driver.Create(out_tif_name, N_Lon, N_Lat, 1, gdal.GDT_Float32) geotransform = (LonMin, Lon_Res, 0, LatMax, 0, -Lat_Res) out_tif.SetGeoTransform(geotransform) srs = osr.SpatialReference() srs.ImportFromEPSG(4326) out_tif.SetProjection(srs.ExportToWkt()) # 数据写出 out_tif.GetRasterBand(1).WriteArray(ndvi_arr_float[i][::-1]) # 将数据写入内存,此时没有写入硬盘 此处[::-1]用于图像的垂直镜像对称,避免图像颠倒 out_tif.FlushCache() # 将数据写入硬盘 out_tif = None # 注意必须关闭tif文件

这样便可以得到正确输出的影像:

当然,我们除了在写入时做垂直镜像操作之外,还可以利用python对图像进行几何变换来实现翻转。具体代码如下:

图像水平翻转:

# 图像水平翻转 im_data_hor = np.flip(im_data, axis=2) hor_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:] writeTiff(im_data_hor, im_geotrans, im_proj, hor_path)

标签水平翻转: 

# 标签水平翻转 Hor = cv2.flip(label, 1) hor_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:] cv2.imwrite(hor_path, Hor) tran_num += 1

图像垂直翻转:

# 图像垂直翻转 im_data_vec = np.flip(im_data, axis=1) vec_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:] writeTiff(im_data_vec, im_geotrans, im_proj, vec_path)

标签垂直翻转:

# 标签垂直翻转 Vec = cv2.flip(label, 0) vec_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:] cv2.imwrite(vec_path, Vec) tran_num += 1

图像镜像翻转:

# 图像对角镜像 im_data_dia = np.flip(im_data_vec, axis=2) dia_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:] writeTiff(im_data_dia, im_geotrans, im_proj, dia_path)

标签镜像翻转:

# 标签对角镜像 Dia = cv2.flip(label, -1) dia_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:] cv2.imwrite(dia_path, Dia) tran_num += 1

若是输出路径的文件夹没有建立好,则会报如下错误。当然,为了减少工作量,也可以定义一个函数,如果路径不存在则自动创建,就可以解决这个问题。

到此这篇关于基于Python实现nc批量转tif格式的文章就介绍到这了,更多相关Python nc转tif内容请搜索易知道(ezd.cc)以前的文章或继续浏览下面的相关文章希望大家以后多多支持易知道(ezd.cc)!

推荐阅读