引言
编译时
运行时
引言在写 Objective-C
代码的时候,如果想给没法获得源码的类增加一些方法,Category
即分类是一种很好的方法,本文将带你了解分类是如何实现为类添加方法的。
先说结论,分类中的方法会在编译时变成 category_t
结构体的变量,在运行时合并进主类,分类中的方法会放在主类中方法的前面,主类中原有的方法不会被覆盖。同时,同名的分类方法,后编译的分类方法会“覆盖”先编译的分类方法。
在编译时,所有我们写的分类,都会转化为 category_t
结构体的变量,category_t
的源码如下:
struct category_t {
const char *name; // 分类名
classref_t cls; // 主类
WrappedPtr<method_list_t, PtrauthStrip> instanceMethods; // 实例方法
WrappedPtr<method_list_t, PtrauthStrip> classMethods; // 类方法
struct protocol_list_t *protocols; // 协议
struct property_list_t *instanceProperties; // 属性
// Fields below this point are not always present on disk.
struct property_list_t *_classProperties; // 类属性
method_list_t *methodsForMeta(bool isMeta) {
if (isMeta) return classMethods;
else return instanceMethods;
}
property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
protocol_list_t *protocolsForMeta(bool isMeta) {
if (isMeta) return nullptr;
else return protocols;
}
};
这个结构体主要是用来存储分类中可表现的信息,同时也从侧面说明了分类是不能创建实例变量的。
运行时map_images_nolock
是运行时的开始,同时也决定了编译顺序对分类方法之间优先级的影响,后编译的分类方法会放在先编译的前面:
void
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
const struct mach_header * const mhdrs[])
{
...
{
uint32_t i = mhCount;
while (i--) { // 读取 header_info 的顺序,决定了后编译的分类方法会放在先编译的前面
const headerType *mhdr = (const headerType *)mhdrs[i];
auto hi = addHeader(mhdr, mhPaths[i], totalClasses, unoptimizedTotalClasses);
...
在运行时,加载分类的起始方法是 loadAllCategories
,可以看到,该方法从 FirstHeader
开始,遍历所有的 header_info
,并依次调用 load_categories_nolock
方法,实现如下:
static void loadAllCategories() {
mutex_locker_t lock(runtimeLock);
for (auto *hi = FirstHeader; hi != NULL; hi = hi->getNext()) {
load_categories_nolock(hi);
}
}
在 load_categories_nolock
方法中,会判断类是不是 stubClass
切是否初始化完成,来决定分类到底附着在哪里,其实现如下:
static void load_categories_nolock(header_info *hi) {
// 是否具有类属性
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
size_t count;
auto processCatlist = [&](category_t * const *catlist) { // 获取需要处理的分类列表
for (unsigned i = 0; i < count; i++) {
category_t *cat = catlist[i];
Class cls = remapClass(cat->cls); // 获取分类对应的主类
locstamped_category_t lc{cat, hi};
if (!cls) { // 获取不到主类(可能因为弱链接),跳过本次循环
// Category's target class is missing (probably weak-linked).
// Ignore the category.
if (PrintConnecting) {
_objc_inform("CLASS: IGNORING category \?\?\?(%s) %p with "
"missing weak-linked target class",
cat->name, cat);
}
continue;
}
// Process this category.
if (cls->isStubClass()) { // 如果时 stubClass,当时无法确定元类对象是哪个,所以先附着在 stubClass 本身上
// Stub classes are never realized. Stub classes
// don't know their metaclass until they're
// initialized, so we have to add categories with
// class methods or properties to the stub itself.
// methodizeClass() will find them and add them to
// the metaclass as appropriate.
if (cat->instanceMethods ||
cat->protocols ||
cat->instanceProperties ||
cat->classMethods ||
cat->protocols ||
(hasClassProperties && cat->_classProperties))
{
objc::unattachedCategories.addForClass(lc, cls);
}
} else {
// First, register the category with its target class.
// Then, rebuild the class's method lists (etc) if
// the class is realized.
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
if (cls->isRealized()) { // 表示类对象已经初始化完毕,会进入合并方法。
attachCategories(cls, &lc, 1, ATTACH_EXISTING);
} else {
objc::unattachedCategories.addForClass(lc, cls);
}
}
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
if (cls->ISA()->isRealized()) { // 表示元类对象已经初始化完毕,会进入合并方法。
attachCategories(cls->ISA(), &lc, 1, ATTACH_EXISTING | ATTACH_METACLASS);
} else {
objc::unattachedCategories.addForClass(lc, cls->ISA());
}
}
}
}
};
processCatlist(hi->catlist(&count));
processCatlist(hi->catlist2(&count));
}
合并分类的方法是通过 attachCategories
方法进行的,对方法、属性和协议分别进行附着。需要注意的是,在新版的运行时方法中不是将方法放到 rw
中,而是新创建了一个叫做 rwe
的属性,目的是为了节约内存,方法的实现如下:
// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order,
// oldest categories first.
static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
int flags)
{
if (slowpath(PrintReplacedMethods)) {
printReplacements(cls, cats_list, cats_count);
}
if (slowpath(PrintConnecting)) {
_objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
}
/*
* Only a few classes have more than 64 categories during launch.
* This uses a little stack, and avoids malloc.
*
* Categories must be added in the proper order, which is back
* to front. To do that with the chunking, we iterate cats_list
* from front to back, build up the local buffers backwards,
* and call attachLists on the chunks. attachLists prepends the
* lists, so the final result is in the expected order.
*/
constexpr uint32_t ATTACH_BUFSIZ = 64;
method_list_t *mlists[ATTACH_BUFSIZ];
property_list_t *proplists[ATTACH_BUFSIZ];
protocol_list_t *protolists[ATTACH_BUFSIZ];
uint32_t mcount = 0;
uint32_t propcount = 0;
uint32_t protocount = 0;
bool fromBundle = NO;
bool isMeta = (flags & ATTACH_METACLASS); // 是否是元类对象
auto rwe = cls->data()->extAllocIfNeeded(); // 为 rwe 生成分配存储空间
for (uint32_t i = 0; i < cats_count; i++) { // 遍历分类列表
auto& entry = cats_list[i];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta); // 获取实例方法或类方法列表
if (mlist) {
if (mcount == ATTACH_BUFSIZ) { // 达到容器的容量上限时
prepareMethodLists(cls, mlists, mcount, NO, fromBundle, __func__); // 准备方法列表
rwe->methods.attachLists(mlists, mcount); // 附着方法到主类中
mcount = 0;
}
mlists[ATTACH_BUFSIZ - ++mcount] = mlist; // 将分类的方法列表放入准备好的容器中
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi); // 获取对象属性或类属性列表
if (proplist) {
if (propcount == ATTACH_BUFSIZ) { // 达到容器的容量上限时进行附着
rwe->properties.attachLists(proplists, propcount); // 附着属性到类或元类中
propcount = 0;
}
proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
}
protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta); // 获取协议列表
if (protolist) {
if (protocount == ATTACH_BUFSIZ) { // 达到容器的容量上限时进行附着
rwe->protocols.attachLists(protolists, protocount); // 附着遵守的协议到类或元类中
protocount = 0;
}
protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
}
}
// 将剩余的方法、属性和协议进行附着
if (mcount > 0) {
prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount,
NO, fromBundle, __func__);
rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);
if (flags & ATTACH_EXISTING) {
flushCaches(cls, __func__, [](Class c){
// constant caches have been dealt with in prepareMethodLists
// if the class still is constant here, it's fine to keep
return !c->cache.isConstantOptimizedCache();
});
}
}
rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
而真正进行方法附着的 attachLists
方法,其作用是将分类的方法放置到类对象或元类对象中,且放在类和元类对象原有方法的前面,这也是为什么分类和类中如果出现同名的方法,会优先调用分类的,也从侧面说明了,原有的类中的方法其实并没有被覆盖:
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return; // 数量为 0 直接返回
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count; // 原有的方法列表的个数
uint32_t newCount = oldCount + addedCount; // 合并后的方法列表的个数
array_t *newArray = (array_t *)malloc(array_t::byteSize(newCount)); // 创建新的数组
newArray->count = newCount;
array()->count = newCount;
for (int i = oldCount - 1; i >= 0; i--)
newArray->lists[i + addedCount] = array()->lists[i]; // 将原有的方法,放到新创建的数组的最后面
for (unsigned i = 0; i < addedCount; i++)
newArray->lists[i] = addedLists[i]; // 将分类中的方法,放到数组的前面
free(array()); // 释放原有数组的内存空间
setArray(newArray); // 将合并后的数组作为新的方法数组
validate();
}
else if (!list && addedCount == 1) { // 如果原本不存在方法列表,直接替换
// 0 lists -> 1 list
list = addedLists[0];
validate();
}
else { // 如果原来只有一个列表,变为多个,走这个逻辑
// 1 list -> many lists
Ptr<List> oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount; // 计算所有方法列表的个数
setArray((array_t *)malloc(array_t::byteSize(newCount))); // 分配新的内存空间并赋值
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList; // 将原有的方法,放到新创建的数组的最后面
for (unsigned i = 0; i < addedCount; i++) // 将分类中的方法,放到数组的前面
array()->lists[i] = addedLists[i];
validate();
}
}
以上就是Objective-C实现分类示例详解的详细内容,更多关于Objective-C分类的资料请关注易知道(ezd.cc)其它相关文章!