python的环境conda简介

python的环境conda简介

目录

Conda Guide

Conda简介

Conda的安装

安装过程

更新conda

镜像服务器

环境管理

查看所有环境

新建环境

进入环境

退出环境

删除环境

复制环境

package管理

列出package

安装package

更新package

卸载package

查找package信息

更新目前环境所有package

导出当前环境的package信息

清除缓存

环境的复制

1、导出环境

2、导入环境

3、Clone环境

Conda Guide Conda简介

conda是一个包,依赖和环境管理工具,适用于多种语言,如: Python, R, Scala, Java, Javascript, C/ C++, FORTRAN。

应用场景:比如在A服务器开发了一个应用,安装了N个包。现在要迁移到B服务器,又要重新安装一遍,还不知道A服务器上哪些包是必须的。conda就是解决这种问题,把该应用需要的包都安装到应用所在的环境中,迁移的时候,只要把环境导出,再导入到B环境即可。

Conda的安装 安装过程

windows的安装就不演示了,直接在网上搜miniconda安装包,然后一路点下一步即可安装完成。

下边讲解linux下的安装

创建condarc.mirror文件

channels: - conda-forge - bioconda - defaults show_channel_urls: true default_channels: - https://mirrors.bfsu.edu.cn/anaconda/pkgs/main - https://mirrors.bfsu.edu.cn/anaconda/pkgs/r - https://mirrors.bfsu.edu.cn/anaconda/pkgs/msys2 custom_channels: conda-forge: https://mirrors.bfsu.edu.cn/anaconda/cloud msys2: https://mirrors.bfsu.edu.cn/anaconda/cloud bioconda: https://mirrors.bfsu.edu.cn/anaconda/cloud menpo: https://mirrors.bfsu.edu.cn/anaconda/cloud pytorch: https://mirrors.bfsu.edu.cn/anaconda/cloud simpleitk: https://mirrors.bfsu.edu.cn/anaconda/cloud curl -L -o /tmp/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py39_4.11.0-Linux-x86_64.sh /bin/bash /tmp/miniconda.sh -b -p /opt/conda rm /tmp/miniconda.sh conda clean -tipsy find /opt/conda -follow -type f -name '*.a' -delete find /opt/conda -follow -type f -name '*.pyc' -delete conda clean -afy cp ./condarc.mirror /root/.condarc 更新conda conda update conda 镜像服务器 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda conda config --set show_channel_urls yes # 执行完上述命令后,会在Users目录生成.condarc 环境管理 查看所有环境 conda env list 新建环境 conda create --name [name] python_or_others ps: conda create --name FastAPI python=3.9.12 进入环境 conda activate env_name 退出环境 conda deactivate 删除环境 conda remove -n env_name --all 复制环境 conda create --clone ENVNAME --name NEWENV package管理 列出package conda list

列出指定环境中的所有软件包

conda list -n myenv 安装package pip install xxxx 或者 conda install xxxx ps:pip install tensorflow

如果不用-n指定环境名称,则被安装在当前活跃环境,也可以通过-c指定通过某个channel安装

conda install (-n python34) numpy 更新package conda update (-n python34) numpy 卸载package conda remove/uninstall package_name 查找package信息 conda search (-n python34) numpy 更新目前环境所有package conda update --all 导出当前环境的package信息 conda env export > environment.yaml 清除缓存

删除索引缓存、锁定文件、未使用的缓存包和tarball(压缩包).

conda clean -a 环境的复制

注意:yaml的方式,很消耗资源,系统配置至少要2核4G以上,且yaml的package不能过多,否则会被killed

1、导出环境 conda env export > environment.yaml

文件内容示例

name: kyle channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge - https://repo.anaconda.com/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ - defaults dependencies: - _pytorch_select=0.2=gpu_0 - pip: - opencv-python==4.1.2.30 2、导入环境 conda env create -f environment.yaml 3、Clone环境 conda env update -n my_env --file ENV.yaml

到此这篇关于python的环境conda简介的文章就介绍到这了,更多相关python环境conda内容请搜索易知道(ezd.cc)以前的文章或继续浏览下面的相关文章希望大家以后多多支持易知道(ezd.cc)!

推荐阅读