今天早上,我在阅读史蒂夫·耶格的著作:《多态性失败》时,我遇到一个问题,即他的同事曾经问过潜在员工,当他们来亚马逊进行面试时。
As an example of polymorphism in
action, let's look at the classic
"eval" interview question, which (as
far as I know) was brought to Amazon
by Ron Braunstein. The question is
quite a rich one, as it manages to
probe a wide variety of important
skills: OOP design, recursion, binary
trees, polymorphism and runtime
typing, general coding skills, and (if
you want to make it extra hard)
parsing theory.
At some point, the candidate hopefully
realizes that you can represent an
arithmetic expression as a binary
tree, assuming you're only using
binary operators such as"+","-",
"*","/". The leaf nodes are all
numbers, and the internal nodes are
all operators. Evaluating the
expression means walking the tree. If
the candidate doesn't realize this,
you can gently lead them to it, or if
necessary, just tell them.
Even if you tell them, it's still an
interesting problem.
The first half of the question, which
some people (whose names I will
protect to my dying breath, but their
initials are Willie Lewis) feel is a
Job Requirement If You Want To Call
Yourself A Developer And Work At
Amazon, is actually kinda hard. The
question is: how do you go from an
arithmetic expression (e.g. in a
string) such as"2 + (2)" to an
expression tree. We may have an ADJ
challenge on this question at some
point.
The second half is: let's say this is
a 2-person project, and your partner,
who we'll call"Willie", is
responsible for transforming the
string expression into a tree. You get
the easy part: you need to decide what
classes Willie is to construct the
tree with. You can do it in any
language, but make sure you pick one,
or Willie will hand you assembly
language. If he's feeling ornery, it
will be for a processor that is no
longer manufactured in production.
You'd be amazed at how many candidates
boff this one.
I won't give away the answer, but a
Standard Bad Solution involves the use
of a switch or case statment (or just
good old-fashioned cascaded-ifs). A
Slightly Better Solution involves
using a table of function pointers,
and the Probably Best Solution
involves using polymorphism. I
encourage you to work through it
sometime. Fun stuff!
因此,让我们尝试以三种方式解决该问题。 如何使用级联if,函数指针表和/或多态性从算术表达式(例如,字符串中)(例如" 2 +(2)")转换为表达式树?
随意解决一个,两个或全部三个问题。
[更新:标题经过修改,以更好地匹配大多数答案。
多态树行走,Python版本
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
| #!/usr/bin/python
class Node:
"""base class, you should not process one of these"""
def process(self):
raise('you should not be processing a node')
class BinaryNode(Node):
"""base class for binary nodes"""
def __init__(self, _left, _right):
self.left = _left
self.right = _right
def process(self):
raise('you should not be processing a binarynode')
class Plus(BinaryNode):
def process(self):
return self.left.process() + self.right.process()
class Minus(BinaryNode):
def process(self):
return self.left.process() - self.right.process()
class Mul(BinaryNode):
def process(self):
return self.left.process() * self.right.process()
class Div(BinaryNode):
def process(self):
return self.left.process() / self.right.process()
class Num(Node):
def __init__(self, _value):
self.value = _value
def process(self):
return self.value
def demo(n):
print n.process()
demo(Num(2)) # 2
demo(Plus(Num(2),Num(5))) # 2 + 3
demo(Plus(Mul(Num(2),Num(3)),Div(Num(10),Num(5)))) # (2 * 3) + (10 / 2) |
测试只是通过使用构造函数来构建二叉树。
程序结构:
抽象基类:Node
抽象基类:BinaryNode
-
所有二进制运算符都从此类继承
-
处理方法负责评估表达式并返回结果
二进制运算符类:Plus,Minus,Mul,Div
编号等级:Num
The problem, I think, is that we need to parse perentheses, and yet they are not a binary operator? Should we take (2) as a single token, that evaluates to 2?
括号不需要出现在表达式树中,但是会影响其形状。例如,(1 + 2)+3的树不同于1+(2 + 3):
与
括号是解析器的"提示"(例如,对于每个superjoe30,"递归地下降")
这进入了解析/编译器理论,这有点像兔子洞...《龙书》是编译器构造的标准文字,并将其应用到了极致。在这种特殊情况下,您想为基本算术构造一个无上下文语法,然后使用该语法解析出抽象语法树。然后,您可以遍历树,从下至上减少它(此时,您将应用多态性/函数指针/ switch语句来减少树)。
我发现这些说明在编译器和解析理论方面非常有用。
表示节点
如果要包含括号,则需要5种节点:
对于多态解决方案,我们需要具有这种类关系:
-
节点
-
BinaryNode:从Node继承
-
加:从二进制节点继承
-
减号:从二进制节点继承
-
Mul:从Binary Node继承
-
Div:从Binary Node继承
-
值:从Node继承
-
Paren:从节点继承
所有节点都有一个称为eval()的虚函数。如果调用该函数,它将返回该子表达式的值。
I won't give away the answer, but a
Standard Bad Solution involves the use
of a switch or case statment (or just
good old-fashioned cascaded-ifs). A
Slightly Better Solution involves
using a table of function pointers,
and the Probably Best Solution
involves using polymorphism.
解释器在过去二十年的发展可以看作是另一种方式-多态(例如朴素的Smalltalk元圆解释器)到函数指针(朴素的Lisp实现,线程代码,C ++)到切换(朴素的字节码解释器),然后又向前发展JIT等-要么需要非常大的类,要么需要(双态语言)双调度,从而将多态性简化为类型情况,您就回到了第一阶段。这里使用的"最佳"定义是什么?
对于简单的东西,多态解决方案是可以的-这是我之前提出的解决方案,但是如果您要绘制一个具有数千个数据点的函数,那么堆栈和字节码/切换或利用运行时的编译器通常会更好。
嗯...我认为您不能为此编写自上而下的解析器而无需回溯,因此它必须是某种移位减少解析器。 LR(1)甚至LALR当然可以与以下(临时)语言定义一起工作:
开始-> E1
E1-> E1 + E1 | E1-E1
E1-> E2 * E2 | E2 / E2 | E2
E2->数字| (E1)
为了将*和/优先于+和-,将其分为E1和E2是必要的。
但这是我必须手动编写解析器的方式:
-
两个堆栈,一个存储树的节点作为操作数,一个存储运算符
-
从左到右读取输入,使数字成为叶节点,然后将其推入操作数堆栈。
-
如果堆栈上有> = 2个操作数,请弹出2,将它们与操作符堆栈中最顶层的操作符组合在一起,然后将此结构推回到操作数树中,除非
-
下一个运算符的优先级高于当前堆栈顶部的那个。
这给我们留下了处理括号的问题。一种优雅(我认为)的解决方案是将每个运算符的优先级作为数字存储在变量中。所以最初
-
int plus,负值= 1;
-
int mul,div = 2;
现在,每当您看到一个左括号时,将所有这些变量加2,并且每当您看到一个右括号时,将所有变量减2。
这将确保3 *(4 + 5)中的+优先于*,并且3 * 4不会被压入堆栈。相反,它将等待5,按4 + 5,然后按3 *(4 + 5)。
String Tokenizer + LL(1)解析器将为您提供一个表达式树...多态方法可能涉及带有" evaluate(a,b)"函数的抽象算术类,该类将被涉及的每个运算符覆盖(加法,减法等)以返回适当的值,并且树包含整数和算术运算符,可以通过对树进行后(?)遍历来对其求值。
我认为问题在于如何编写解析器,而不是评估器。或者更确切地说,如何从字符串创建表达式树。
返回基类的Case语句不完全计数。
"多态"解决方案的基本结构(换句话说,我不在乎您用什么构建它,我只想通过重写尽可能少的代码来扩展它)就可以从具有一组(动态)已知类型的流。
实现多态解决方案的关键是要有一种从模式匹配器(可能是递归的)创建表达式对象的方法。即,将BNF或类似语法映射到对象工厂。
回复:贾斯汀
我认为这棵树看起来像这样:
基本上,您将有一个"评估"节点,该节点仅评估其下方的树。然后可以将其优化为:
在这种情况下,不需要括号并且不添加任何内容。他们在逻辑上没有添加任何内容,因此就走了。
正如人们之前提到的,使用表达式树时不需要括号。当您查看表达式树时,操作顺序变得不那么明显。括号是对解析器的提示。
虽然可接受的答案是解决问题一半的方法,但另一半-实际上是解析表达式-仍未解决。通常,可以使用递归下降解析器解决这类问题。编写这样的解析器通常是一个有趣的练习,但是大多数用于语言解析的现代工具都会为您提供抽象的工具。
如果在字符串中允许使用浮点数,则解析器的难度也将大大提高。我必须创建一个DFA来接受C语言中的浮点数-这是一项非常艰苦而又详尽的任务。请记住,有效的浮点数包括:10、10、10.123、9.876e-5、1.0f,.025等。我认为对此进行了一些分配(有利于简洁)。
好的,这是我的幼稚实现。 抱歉,我没有为那个对象使用对象,但是很容易转换。 我感觉有点像邪恶的威利(摘自史蒂夫的故事)。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
| #!/usr/bin/env python
#tree structure [left argument, operator, right argument, priority level]
tree_root = [None, None, None, None]
#count of parethesis nesting
parenthesis_level = 0
#current node with empty right argument
current_node = tree_root
#indices in tree_root nodes Left, Operator, Right, PRiority
L, O, R, PR = 0, 1, 2, 3
#functions that realise operators
def sum(a, b):
return a + b
def diff(a, b):
return a - b
def mul(a, b):
return a * b
def div(a, b):
return a / b
#tree evaluator
def process_node(n):
try:
len(n)
except TypeError:
return n
left = process_node(n[L])
right = process_node(n[R])
return n[O](left, right)
#mapping operators to relevant functions
o2f = {'+': sum, '-': diff, '*': mul, '/': div, '(': None, ')': None}
#converts token to a node in tree
def convert_token(t):
global current_node, tree_root, parenthesis_level
if t == '(':
parenthesis_level += 2
return
if t == ')':
parenthesis_level -= 2
return
try: #assumption that we have just an integer
l = int(t)
except (ValueError, TypeError):
pass #if not, no problem
else:
if tree_root[L] is None: #if it is first number, put it on the left of root node
tree_root[L] = l
else: #put on the right of current_node
current_node[R] = l
return
priority = (1 if t in '+-' else 2) + parenthesis_level
#if tree_root does not have operator put it there
if tree_root[O] is None and t in o2f:
tree_root[O] = o2f[t]
tree_root[PR] = priority
return
#if new node has less or equals priority, put it on the top of tree
if tree_root[PR] >= priority:
temp = [tree_root, o2f[t], None, priority]
tree_root = current_node = temp
return
#starting from root search for a place with higher priority in hierarchy
current_node = tree_root
while type(current_node[R]) != type(1) and priority > current_node[R][PR]:
current_node = current_node[R]
#insert new node
temp = [current_node[R], o2f[t], None, priority]
current_node[R] = temp
current_node = temp
def parse(e):
token = ''
for c in e:
if c <= '9' and c >='0':
token += c
continue
if c == ' ':
if token != '':
convert_token(token)
token = ''
continue
if c in o2f:
if token != '':
convert_token(token)
convert_token(c)
token = ''
continue
print"Unrecognized character:", c
if token != '':
convert_token(token)
def main():
parse('(((3 * 4) / (1 + 2)) + 5)')
print tree_root
print process_node(tree_root)
if __name__ == '__main__':
main() |
我已经用一些基本技术编写了这样的解析器,例如
中缀-> RPN和
调车场和
树遍历。
这是我想出的实现。
它用C ++编写,可在Linux和Windows上编译。
任何建议/问题都受到欢迎。
So, let's try to tackle the problem all three ways. How do you go from an arithmetic expression (e.g. in a string) such as"2 + (2)" to an expression tree using cascaded-if's, a table of function pointers, and/or polymorphism?
这很有趣,但是我不认为这属于面向对象编程的领域...我认为它与解析技术有更多关系。
我有点喜欢这个c#控制台应用程序,只是有点概念上的证明。 感觉可能会好得多(GetNode中的switch语句有点笨拙(在这里,我试图将类名映射到运算符时碰到了空白))。 任何有关如何改进它的建议都非常欢迎。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
| using System;
class Program
{
static void Main(string[] args)
{
string expression ="(((3.5 * 4.5) / (1 + 2)) + 5)";
Console.WriteLine(string.Format("{0} = {1}", expression, new Expression.ExpressionTree(expression).Value));
Console.WriteLine("
Show's over folks, press a key to exit");
Console.ReadKey(false);
}
}
namespace Expression
{
// -------------------------------------------------------
abstract class NodeBase
{
public abstract double Value { get; }
}
// -------------------------------------------------------
class ValueNode : NodeBase
{
public ValueNode(double value)
{
_double = value;
}
private double _double;
public override double Value
{
get
{
return _double;
}
}
}
// -------------------------------------------------------
abstract class ExpressionNodeBase : NodeBase
{
protected NodeBase GetNode(string expression)
{
// Remove parenthesis
expression = RemoveParenthesis(expression);
// Is expression just a number?
double value = 0;
if (double.TryParse(expression, out value))
{
return new ValueNode(value);
}
else
{
int pos = ParseExpression(expression);
if (pos > 0)
{
string leftExpression = expression.Substring(0, pos - 1).Trim();
string rightExpression = expression.Substring(pos).Trim();
switch (expression.Substring(pos - 1, 1))
{
case"+":
return new Add(leftExpression, rightExpression);
case"-":
return new Subtract(leftExpression, rightExpression);
case"*":
return new Multiply(leftExpression, rightExpression);
case"/":
return new Divide(leftExpression, rightExpression);
default:
throw new Exception("Unknown operator");
}
}
else
{
throw new Exception("Unable to parse expression");
}
}
}
private string RemoveParenthesis(string expression)
{
if (expression.Contains("("))
{
expression = expression.Trim();
int level = 0;
int pos = 0;
foreach (char token in expression.ToCharArray())
{
pos++;
switch (token)
{
case '(':
level++;
break;
case ')':
level--;
break;
}
if (level == 0)
{
break;
}
}
if (level == 0 && pos == expression.Length)
{
expression = expression.Substring(1, expression.Length - 2);
expression = RemoveParenthesis(expression);
}
}
return expression;
}
private int ParseExpression(string expression)
{
int winningLevel = 0;
byte winningTokenWeight = 0;
int winningPos = 0;
int level = 0;
int pos = 0;
foreach (char token in expression.ToCharArray())
{
pos++;
switch (token)
{
case '(':
level++;
break;
case ')':
level--;
break;
}
if (level <= winningLevel)
{
if (OperatorWeight(token) > winningTokenWeight)
{
winningLevel = level;
winningTokenWeight = OperatorWeight(token);
winningPos = pos;
}
}
}
return winningPos;
}
private byte OperatorWeight(char value)
{
switch (value)
{
case '+':
case '-':
return 3;
case '*':
return 2;
case '/':
return 1;
default:
return 0;
}
}
}
// -------------------------------------------------------
class ExpressionTree : ExpressionNodeBase
{
protected NodeBase _rootNode;
public ExpressionTree(string expression)
{
_rootNode = GetNode(expression);
}
public override double Value
{
get
{
return _rootNode.Value;
}
}
}
// -------------------------------------------------------
abstract class OperatorNodeBase : ExpressionNodeBase
{
protected NodeBase _leftNode;
protected NodeBase _rightNode;
public OperatorNodeBase(string leftExpression, string rightExpression)
{
_leftNode = GetNode(leftExpression);
_rightNode = GetNode(rightExpression);
}
}
// -------------------------------------------------------
class Add : OperatorNodeBase
{
public Add(string leftExpression, string rightExpression)
: base(leftExpression, rightExpression)
{
}
public override double Value
{
get
{
return _leftNode.Value + _rightNode.Value;
}
}
}
// -------------------------------------------------------
class Subtract : OperatorNodeBase
{
public Subtract(string leftExpression, string rightExpression)
: base(leftExpression, rightExpression)
{
}
public override double Value
{
get
{
return _leftNode.Value - _rightNode.Value;
}
}
}
// -------------------------------------------------------
class Divide : OperatorNodeBase
{
public Divide(string leftExpression, string rightExpression)
: base(leftExpression, rightExpression)
{
}
public override double Value
{
get
{
return _leftNode.Value / _rightNode.Value;
}
}
}
// -------------------------------------------------------
class Multiply : OperatorNodeBase
{
public Multiply(string leftExpression, string rightExpression)
: base(leftExpression, rightExpression)
{
}
public override double Value
{
get
{
return _leftNode.Value * _rightNode.Value;
}
}
}
} |
Or maybe this is the real question:
how can you represent (2) as a BST?
That is the part that is tripping me
up.
递归。
应该使用imo功能语言。树很难用OO语言表示和操纵。
@贾斯汀:
看我关于表示节点的注释。如果您使用该方案,则
可以表示为