Python加载文件内容的两种实现方式

目录

一、利用open()函数进行加载

二、利用Pandas库中的read_csv()方法进行加载

三、示例

说到机器学习,大家首先想到的可能就是Python和算法了,其实光有Python和算法是不够的,数据才是进行机器学习的前提。

大多数的数据都会存储在文件中,要想通过Python调用算法对数据进行相关学习,首先就要将数据读入程序中,本文介绍两种加载数据的方式,在之后的算法介绍中,将频繁使用这两种方式将数据加载到程序。

下面我们将以Logistic Regression模型加载数据为例,分别对两种不同的加载数据的方式进行介绍。

一、利用open()函数进行加载 def load_file(file_name): ''' 利用open()函数加载文件 :param file_name: 文件名 :return: 特征矩阵、标签矩阵 ''' f = open(file_name) # 打开训练数据集所在的文档 feature = [] # 存放特征的列表 label = [] #存放标签的列表 for row in f.readlines(): f_tmp = [] # 存放特征的中间列表 l_tmp = [] # 存放标签的中间列表 number = row.strip().split("\t") # 按照\t分割每行的元素,得到每行特征和标签 f_tmp.append(1) # 设置偏置项 for i in range(len(number) - 1): f_tmp.append(float(number[i])) l_tmp.append(float(number[-1])) feature.append(f_tmp) label.append(l_tmp) f.close() # 关闭文件,很重要的操作 return np.mat(feature), np.mat(label) 二、利用Pandas库中的read_csv()方法进行加载 def load_file_pd(path, file_name): ''' 利用pandas库加载文件 :param path: 文件路径 :param file_name: 文件名称 :return: 特征矩阵、标签矩阵 ''' feature = pd.read_csv(path + file_name, delimiter="\t", header=None, usecols=[0, 1]) feature.columns = ["a", "b"] feature = feature.reindex(columns=list('cab'), fill_value=1) label = pd.read_csv(path + file_name, delimiter="\t", header=None, usecols=[2]) return feature.values, label.values 三、示例

我们可以使用上述的两种方法加载部分数据进行测试,数据内容如下:

数据分为三列,前两列是特征,最后一列是标签。

加载数据代码如下:

''' 两种方式加载文件 ''' import pandas as pd import numpy as np def load_file(file_name): ''' 利用open()函数加载文件 :param file_name: 文件名 :return: 特征矩阵、标签矩阵 ''' f = open(file_name) # 打开训练数据集所在的文档 feature = [] # 存放特征的列表 label = [] #存放标签的列表 for row in f.readlines(): f_tmp = [] # 存放特征的中间列表 l_tmp = [] # 存放标签的中间列表 number = row.strip().split("\t") # 按照\t分割每行的元素,得到每行特征和标签 f_tmp.append(1) # 设置偏置项 for i in range(len(number) - 1): f_tmp.append(float(number[i])) l_tmp.append(float(number[-1])) feature.append(f_tmp) label.append(l_tmp) f.close() # 关闭文件,很重要的操作 return np.mat(feature), np.mat(label) def load_file_pd(path, file_name): ''' 利用pandas库加载文件 :param path: 文件路径 :param file_name: 文件名称 :return: 特征矩阵、标签矩阵 ''' feature = pd.read_csv(path + file_name, delimiter="\t", header=None, usecols=[0, 1]) feature.columns = ["a", "b"] feature = feature.reindex(columns=list('cab'), fill_value=1) label = pd.read_csv(path + file_name, delimiter="\t", header=None, usecols=[2]) return feature.values, label.values if __name__ == "__main__": path = "C://Users//Machenike//Desktop//xzw//" feature, label = load_file(path + "test.txt") feature_pd, label_pd = load_file_pd(path, "test.txt") print(feature) print(feature_pd) print(label) print(label_pd)

测试结果:

[[ 1.          1.43481273  4.54377111]
 [ 1.          5.80444603  7.72222239]
 [ 1.          2.89737803  4.84582798]
 [ 1.          3.48896827  9.42538199]
 [ 1.          7.98990181  9.38748992]
 [ 1.          6.07911968  7.81580716]
 [ 1.          8.54988938  9.83106546]
 [ 1.          1.86253147  3.64519173]
 [ 1.          5.09264649  7.16456405]
 [ 1.          0.64048734  2.96504627]
 [ 1.          0.44568267  7.27017831]]
[[ 1.          1.43481273  4.54377111]
 [ 1.          5.80444603  7.72222239]
 [ 1.          2.89737803  4.84582798]
 [ 1.          3.48896827  9.42538199]
 [ 1.          7.98990181  9.38748992]
 [ 1.          6.07911968  7.81580716]
 [ 1.          8.54988938  9.83106546]
 [ 1.          1.86253147  3.64519173]
 [ 1.          5.09264649  7.16456405]
 [ 1.          0.64048734  2.96504627]
 [ 1.          0.44568267  7.27017831]]
[[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]
[[0]
 [0]
 [0]
 [0]
 [0]
 [0]
 [0]
 [0]
 [0]
 [0]
 [0]]

从测试结果来看可知两种加载数据的方法得到的数据结果是一样的,故两种方法均适用于加载数据。

注意:

此处是以Logistic Regression模型加载数据为例,数据与数据本身或许会有差异,但加载数据的方式都是大同小异的,要灵活变通。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持易知道(ezd.cc)。

推荐阅读