python数字图像处理之图像自动阈值分割示例

目录

引言

1、threshold_otsu

2、threshold_yen

3、threshold_li

4、threshold_isodata

5、threshold_adaptive

引言

图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生相应的二值图像。

在skimage库中,阈值分割的功能是放在filters模块中。

我们可以手动指定一个阈值,从而来实现分割。也可以让系统自动生成一个阈值,下面几种方法就是用来自动生成阈值。

1、threshold_otsu

基于Otsu的阈值分割方法,函数调用格式:

skimage.filters.threshold_otsu(image, nbins=256)

参数image是指灰度图像,返回一个阈值。

from skimage import data,filters import matplotlib.pyplot as plt image = data.camera() thresh = filters.threshold_otsu(image) #返回一个阈值 dst =(image <= thresh)*1.0 #根据阈值进行分割 plt.figure('thresh',figsize=(8,8)) plt.subplot(121) plt.title('original image') plt.imshow(image,plt.cm.gray) plt.subplot(122) plt.title('binary image') plt.imshow(dst,plt.cm.gray) plt.show()

返回阈值为87,根据87进行分割得下图:

2、threshold_yen

使用方法同上:

thresh = filters.threshold_yen(image)

返回阈值为198,分割如下图:

3、threshold_li

使用方法同上:

thresh = filters.threshold_li(image)

返回阈值64.5,分割如下图:

4、threshold_isodata

阈值计算方法:

threshold = (image[image <= threshold].mean() +image[image > threshold].mean()) / 2.0

使用方法同上:

thresh = filters.threshold_isodata(image)

返回阈值为87,因此分割效果和threshold_otsu一样。

5、threshold_adaptive

调用函数为:

skimage.filters.threshold_adaptive(image, block_size, method='gaussian')

block_size: 块大小,指当前像素的相邻区域大小,一般是奇数(如3,5,7。。。)

method: 用来确定自适应阈值的方法,有'mean', 'generic', 'gaussian' 和 'median'。

省略时默认为gaussian

该函数直接访问一个阈值后的图像,而不是阈值。

from skimage import data,filters import matplotlib.pyplot as plt image = data.camera() dst =filters.threshold_adaptive(image, 15) #返回一个阈值图像 plt.figure('thresh',figsize=(8,8)) plt.subplot(121) plt.title('original image') plt.imshow(image,plt.cm.gray) plt.subplot(122) plt.title('binary image') plt.imshow(dst,plt.cm.gray) plt.show()

大家可以修改block_size的大小和method值来查看更多的效果。如:

dst1 =filters.threshold_adaptive(image,31,'mean') dst2 =filters.threshold_adaptive(image,5,'median')

两种效果如下:

以上就是python数字图像处理之图像自动阈值分割示例的详细内容,更多关于python数字图像自动阈值分割的资料请关注易知道(ezd.cc)其它相关文章!

推荐阅读