win10+RTX3050ti+TensorFlow+cudn+cudnn配置深度学习环境的方法

避坑1:RTX30系列显卡不支持cuda11.0以下版本,具体上限版本可自行查阅:

方法一,在cmd中输入nvidia-smi查看

方法二:

由此可以看出本电脑最高适配cuda11.2.1版本;

注意需要版本适配,这里我们选择TensorFlow-gpu = 2.5,cuda=11.2.1,cudnn=8.1,python3.7

接下来可以下载cudn和cundnn:

官网:https://developer.nvidia.com/cuda-toolkit-archive

 下载对应版本exe文件打开默认安装就可;

验证是否安装成功:

官网:cuDNN Archive | NVIDIA Developer

把下载文件进行解压把bin+lib+include文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2文件下;

进入环境变量设置(cuda会自动设置,如果没有的补全):

查看是否安装成功:

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite bandwidthTest.exe

 安装tensorflow-gpu:

pip install tensorflow-gpu==2.5

最后我们找相关程序来验证一下:

第一步:

import tensorflow as tf print(tf.__version__) print('GPU', tf.test.is_gpu_available())

第二步:

# _*_ coding=utf-8 _*_ ''' @author: crazy jums @time: 2021-01-24 20:55 @desc: 添加描述 ''' # 指定GPU训练 import os os.environ["CUDA_VISIBLE_DEVICES"]="0" ##表示使用GPU编号为0的GPU进行计算 import numpy as np from tensorflow.keras.models import Sequential # 采用贯序模型 from tensorflow.keras.layers import Dense, Dropout, Conv2D, MaxPool2D, Flatten from tensorflow.keras.datasets import mnist from tensorflow.keras.utils import to_categorical from tensorflow.keras.callbacks import TensorBoard import time def create_model(): model = Sequential() model.add(Conv2D(32, (5, 5), activation='relu', input_shape=[28, 28, 1])) # 第一卷积层 model.add(Conv2D(64, (5, 5), activation='relu')) # 第二卷积层 model.add(MaxPool2D(pool_size=(2, 2))) # 池化层 model.add(Flatten()) # 平铺层 model.add(Dropout(0.5)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) return model def compile_model(model): model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['acc']) return model def train_model(model, x_train, y_train, batch_size=32, epochs=10): tbCallBack = TensorBoard(log_dir="model", histogram_freq=1, write_grads=True) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, shuffle=True, verbose=2, validation_split=0.2, callbacks=[tbCallBack]) return history, model if __name__ == "__main__": import tensorflow as tf print(tf.__version__) from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) (x_train, y_train), (x_test, y_test) = mnist.load_data() # mnist的数据我自己已经下载好了的 print(np.shape(x_train), np.shape(y_train), np.shape(x_test), np.shape(y_test)) x_train = np.expand_dims(x_train, axis=3) x_test = np.expand_dims(x_test, axis=3) y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) print(np.shape(x_train), np.shape(y_train), np.shape(x_test), np.shape(y_test)) model = create_model() model = compile_model(model) print("start training") ts = time.time() history, model = train_model(model, x_train, y_train, epochs=2) print("start training", time.time() - ts)

验证成功。

以上就是win10+RTX3050ti+TensorFlow+cudn+cudnn配置深度学习环境的详细内容,更多关于win10+RTX3050ti+TensorFlow+cudn+cudnn深度学习的资料请关注易知道(ezd.cc)其它相关文章!

推荐阅读

    学习写字楼新选择6000元主流配置

    学习写字楼新选择6000元主流配置,,这种配置需要考虑双核心的办公和娱乐平台,充分考虑办公室的办公需求和娱乐需求,以约6000元的预算和cost-e

    酷睿I7 配置

    酷睿I7 配置,配置,玩家国度啦华硕 Rampage II Extreme(3800元)如果米不够,也可以把Extreme改为Gene,不过是小板内存推荐金士顿6G DDR3 2000骇

    提高3A四核羿龙II游戏配置的性能

    提高3A四核羿龙II游戏配置的性能,,以节能环保为主题的IT产业,目前3A低端平台处理器、主板芯片组、独立开发卡性能突出,特别是在与AMD的处理

    opporeno8参数配置及价格

    opporeno8参数配置及价格,面部,亿元,Oppo的荣誉2020年1月4日,接近屏幕关闭传感器是否支持双卡:支持oppor11splus什么时候上市的Oppo R11S P

    设置里程碑|设置里程碑的方法有哪些

    设置里程碑|设置里程碑的方法有哪些,,1. 设置里程碑的方法有哪些1、通过挑战风险,突破认知,从而突破自我。只有在某些特殊的时刻,比如想法和

    查看配置:酷睿i3530集展示办公平台

    查看配置:酷睿i3530集展示办公平台,,由于时间和精力的关系,我们不可能对所有的配置进行评论,希望我们能理解,我希望我们的评论能在那些需要帮

    3500元超额值学生娱乐结构的优化配置

    3500元超额值学生娱乐结构的优化配置,,作为一个DIY的主流用户领域的学生,每个用户51学生攒机的高峰。因为学生用户没有稳定的收入来源,攒机