1.for循环
2.while循环
3.使用递归
4.递归+for循环
5.递归+while循环
6.递归+定义函数+for循环
7.指定列表
趣方程求解
pandas 每日一练
斐波那契数列——经典例子,永不过时!!!
1.for循环def fibonacci1(n):
a, b = 0, 1
for i in range(n):
a, b = b, a+b
print(a)
fibonacci1(3)
或
def fib1(w):
a, b = 1, 1
for i in range(w-1):
a, b = b, a+b
return a
print(fib1(3))
[^1]刚好得出这个位置的数
2.while循环def fibnaqi2(m):
a, b = 0, 1
i = 0
while i < m:
print(b)
a, b = b, a+b
i += 1
fibnaqi2(4)
[^1]刚好得出这个位置的数
3.使用递归def fib2(q):
if q == 1 or q == 2:
return 1
return fib2(q-1)+fib2(q-2)
print(fib2(9))
4.递归+for循环
def fibnacci3(p):
lst = []
for i in range(p):
if i == 1 or i == 0:
lst.append(1)
else:
lst.append(lst[i-1]+lst[i-2])
print(lst)
fibnacci3(5)
5.递归+while循环
def fibnacci4(k):
lis = []
i = 0
while i<k:
if i == 0 or i == 1:
lis.append(1)
else:
lis.append(lis[i-2]+lis[i-1])
i += 1
print(lis)
fibnacci4(6)
6.递归+定义函数+for循环
def fibnacci5(o):
def fn(i):
if i < 2:
return 1
else:
return (fn(i-2)+fn(i-1))
for i in range(o):
print(fn(i))
fibnacci5(8)
7.指定列表
def fib3(e):
if e == 1:
return [1]
if e == 2:
return [1, 1]
fibs = [1, 1]
for i in range(2, e):
fibs.append(fibs[-1]+fibs[-2])
return fibs
print(fib3(12))
趣方程求解
题目描述
二次方程式 ax**2 + bx + c = 0 (a、b、c 用户提供,为实数,a ≠ 0)
# 导入 cmath(复杂数学运算) 模块
import cmath
a = float(input('输入 a: '))
b = float(input('输入 b: '))
c = float(input('输入 c: '))
# 计算
d = (b ** 2) - (4 * a * c)
# 两种求解方式
sol1 = (-b - cmath.sqrt(d)) / (2 * a)
sol2 = (-b + cmath.sqrt(d)) / (2 * a)
print('结果为 {0} 和 {1}'.format(sol1, sol2))
pandas 每日一练
# -*- coding = utf-8 -*-
# @Time : 2022/7/26 21:48
# @Author : lxw_pro
# @File : pandas -8 练习.py
# @Software : PyCharm
import pandas as pd
import numpy as np
df = pd.read_excel('text5.xlsx')
print(df)
print()
程序运行结果如下:
Unnamed: 0 Unnamed: 0.1 project ... test_time date time
0 0 00:00:00 Python ... 2022-06-20 18:30:20 2022-06-20 18:30:20
1 1 1 Java ... 2022-06-18 19:40:20 2022-06-18 19:40:20
2 2 2 C ... 2022-06-08 13:33:20 2022-06-08 13:33:20
3 3 3 MySQL ... 2021-12-23 11:26:20 2021-12-23 11:26:20
4 4 4 Linux ... 2021-12-20 18:20:20 2021-12-20 18:20:20
5 5 5 Math ... 2022-07-20 16:30:20 2022-07-20 16:30:20
6 6 6 English ... 2022-06-23 15:30:20 2022-06-23 15:30:20
7 7 7 Python ... 2022-07-19 09:30:20 2022-07-19 09:30:20
[8 rows x 7 columns]
41、将test_time列设置为索引
print(df.set_index('test_time'))
print()
程序运行结果如下:
Unnamed: 0 Unnamed: 0.1 ... date time
test_time ...
2022-06-20 18:30:20 0 00:00:00 ... 2022-06-20 18:30:20
2022-06-18 19:40:20 1 1 ... 2022-06-18 19:40:20
2022-06-08 13:33:20 2 2 ... 2022-06-08 13:33:20
2021-12-23 11:26:20 3 3 ... 2021-12-23 11:26:20
2021-12-20 18:20:20 4 4 ... 2021-12-20 18:20:20
2022-07-20 16:30:20 5 5 ... 2022-07-20 16:30:20
2022-06-23 15:30:20 6 6 ... 2022-06-23 15:30:20
2022-07-19 09:30:20 7 7 ... 2022-07-19 09:30:20
[8 rows x 6 columns]
42、生成一个和df长度相同的随机数dataframe
df1 = pd.DataFrame(pd.Series(np.random.randint(1, 10, 8)))
print(df1)
print()
程序运行结果如下:
0
0 1
1 3
2 2
3 7
4 7
5 3
6 5
7 1
43、将上一题生成的dataframe与df合并
df = pd.concat([df, df1], axis=1)
print(df)
print()
程序运行结果如下:
Unnamed: 0 Unnamed: 0.1 project ... date time 0
0 0 00:00:00 Python ... 2022-06-20 18:30:20 1
1 1 1 Java ... 2022-06-18 19:40:20 3
2 2 2 C ... 2022-06-08 13:33:20 2
3 3 3 MySQL ... 2021-12-23 11:26:20 7
4 4 4 Linux ... 2021-12-20 18:20:20 7
5 5 5 Math ... 2022-07-20 16:30:20 3
6 6 6 English ... 2022-06-23 15:30:20 5
7 7 7 Python ... 2022-07-19 09:30:20 1
[8 rows x 8 columns]
44、生成新的一列new为popularity列减去之前生成随机数列
df['new'] = df['popularity'] - df[0]
print(df)
print()
程序运行结果如下:
Unnamed: 0 Unnamed: 0.1 project popularity ... date time 0 new
0 0 00:00:00 Python 95 ... 2022-06-20 18:30:20 1 94
1 1 1 Java 92 ... 2022-06-18 19:40:20 3 89
2 2 2 C 145 ... 2022-06-08 13:33:20 2 143
3 3 3 MySQL 141 ... 2021-12-23 11:26:20 7 134
4 4 4 Linux 84 ... 2021-12-20 18:20:20 7 77
5 5 5 Math 148 ... 2022-07-20 16:30:20 3 145
6 6 6 English 146 ... 2022-06-23 15:30:20 5 141
7 7 7 Python 149 ... 2022-07-19 09:30:20 1 148
[8 rows x 9 columns]
45、检查数据中是否含有任何缺失值
jch = df.isnull().values.any()
print(jch) # 运行结果为:False
print()
46、将popularity列类型转换为浮点数
fds = df['popularity'].astype(np.float64)
print(fds)
print()
程序运行结果如下:
0 95.0
1 92.0
2 145.0
3 141.0
4 84.0
5 148.0
6 146.0
7 149.0
Name: popularity, dtype: float64
47、计算popularity大于100的次数
cs = len(df[df['popularity'] > 100])
print(cs) # 运行结果为:5
print()
48、查看project列共有几种学历
ckj = df['project'].nunique()
print(ckj) # 运行结果为:7
print()
49、查看每科出现的次数
ckc = df.project.value_counts()
print(ckc)
print()
程序运行结果如下:
Python 2
Java 1
C 1
MySQL 1
Linux 1
Math 1
English 1
Name: project, dtype: int64
50、提取popularity与new列的和大于136的最后3行
df1 = df[['popularity', 'new']]
hh = df1.apply(np.sum, axis=1)
res = df.iloc[np.where(hh > 136)[0][-3:], :]
print(res)
程序运行结果如下:
Unnamed: 0 Unnamed: 0.1 project popularity ... date time 0 new
5 5 5 Math 148 ... 2022-07-20 16:30:20 3 145
6 6 6 English 146 ... 2022-06-23 15:30:20 5 141
7 7 7 Python 149 ... 2022-07-19 09:30:20 1 148
[3 rows x 9 columns]
到此这篇关于Python实现斐波那契数列的多种写法总结的文章就介绍到这了,更多相关Python斐波那契数列内容请搜索易知道(ezd.cc)以前的文章或继续浏览下面的相关文章希望大家以后多多支持易知道(ezd.cc)!