前言
records格式
index格式
columns 类型
values格式
split 参数示例
压缩与编码
前言本文讲解如何加载json文件或字符串为pandas数据框。pandas把json数据分成几种典型类型,希望对你实际数据应用开发有所启示。
有时可能需要转换json文件位pandas数据框。使用pandas内置的read_json()函数很容易实现,
其语法如下:
read_json(‘path’, orient=’index’)
path: json文件的路径
orient: json文件的格式描述,缺省是index
,还有其他选型:split, records, columns, values
。
下面通过几个示例进行说明。
records格式假设json文件my_file.json的格式如下:
[
{
"points": 25,
"assists": 5
},
{
"points": 12,
"assists": 7
},
{
"points": 15,
"assists": 7
},
{
"points": 19,
"assists": 12
}
]
我们使用pandas的函数read_json,只要只从orient参数位records:
# 加载json文件,生成pandas数据框
df = pd.read_json('data/json_file.json', orient='records')
# 查看数据框
print(df)
输出结果:
index格式points assists
0 25 5
1 12 7
2 15 7
3 19 12
假设json文件格式为:
{
"0": {
"points": 25,
"assists": 5
},
"1": {
"points": 12,
"assists": 7
},
"2": {
"points": 15,
"assists": 7
},
"3": {
"points": 19,
"assists": 12
}
}
与上面实现代码一样,仅需要修改orient=‘index’:
import pandas as pd
df = pd.read_json("data/my_file.json", orient='index')
print(df)
输出结果:
columns 类型points assists
0 25 5
1 12 7
2 15 7
3 19 12
假设json文件格式为:
{
"points": {
"0": 25,
"1": 12,
"2": 15,
"3": 19
},
"assists": {
"0": 5,
"1": 7,
"2": 7,
"3": 12
}
}
加载代码修改orient参数为’columns’:
import pandas as pd
df = pd.read_json("data/my_file.json", orient='columns')
print(df)
结果与上面一致。
values格式假设json文件代码如下:
[
[
25,
5
],
[
12,
7
],
[
15,
7
],
[
19,
12
]
]
加载代码如下:
import pandas as pd
df = pd.read_json("data/my_file.json", orient='values')
print(df)
输出结果:
split 参数示例0 1
0 25 5
1 12 7
2 15 7
3 19 12
下面看split参数示例:
import pandas as pd
# 示例数据
data = '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}'
df = pd.read_json(data, orient='split')
print(df)
输出交叉表形式结果:
col 1 col 2
row 1 a b
row 2 c d
如果不指定index,则行自动生成序号:
import pandas as pd
data = '{"columns":["col 1","col 2"], "data":[["a","b"],["c","d"]]}'
df = pd.read_json(data, orient='split')
print(df)
输出结果:
压缩与编码col 1 col 2
0 a b
1 c d
使用compression参数可以解压并载入json文件,参数选型有:‘zip’, ‘gzip’, ‘bz2’, ‘zstd’。如果指定zip,则确保文件为zip文件格式,None表示不解压。
使用 encoding
指定自定义编码,缺省为 UTF-8 编码。
假设my_file.zip压缩文件格式为:
[
[
25,
5
],
[
12,
7
],
[
15,
7
],
[
19,
12
]
]
载入代码:
import pandas as pd
df = pd.read_json("data/my_file.zip", orient='values', compression='zip')
print(df)
到此这篇关于读Json文件生成pandas数据框详情的文章就介绍到这了,更多相关Json生成pandas数据框内容请搜索易知道(ezd.cc)以前的文章或继续浏览下面的相关文章希望大家以后多多支持易知道(ezd.cc)!