什么是锁机制?
Lock() 管理线程
RLock() 与Lock()的区别
什么是锁机制?要回答这个问题,我们需要知道为什么需要使用锁机制。前面我们谈到一个进程内的多个线程的某些资源是共享的,这也是线程的一大优势,但是也随之带来一个问题,即当两个及两个以上的线程同时访问共享资源时,如果此时没有预设对应的同步机制,就可能带来同一时刻多个线程同时访问同一个共享资源,即出现竞态,多数情况下我们是不希望出现这样的情况的,那么怎么避免呢?
Lock() 管理线程先看一段代码:
import threading
import time
resource = 0
count = 1000000
resource_lock = threading.Lock()
def increment():
global resource
for i in range(count):
resource += 1
def decerment():
global resource
for i in range(count):
resource -= 1
increment_thread = threading.Thread(target=increment)
decerment_thread = threading.Thread(target=decerment)
increment_thread.start()
decerment_thread.start()
increment_thread.join()
decerment_thread.join()
print(resource)
运行截图如下:
运行结果
当我们多次运行时,可以看到最终的结果都几乎不等于我们期待的值即resource
初始值0
。
为什么呢? 原因就是因为 += 和 -=并不是原子操作。
可以使用dis模块查看字节码:
import dis
def add(total):
total += 1
def desc(total):
total -= 1
total = 0
print(dis.dis(add))
print(dis.dis(desc))
# 运行结果:
# 3 0 LOAD_FAST 0 (total)
# 3 LOAD_CONST 1 (1)
# 6 INPLACE_ADD
# 7 STORE_FAST 0 (total)
# 10 LOAD_CONST 0 (None)
# 13 RETURN_VALUE
# None
# 5 0 LOAD_FAST 0 (total)
# 3 LOAD_CONST 1 (1)
# 6 INPLACE_SUBTRACT
# 7 STORE_FAST 0 (total)
# 10 LOAD_CONST 0 (None)
# 13 RETURN_VALUE
# None
那么如何保证初始值为0
呢? 我们可以利用Lock()
,代码如下:
import threading
import time
resource = 0
count = 1000000
resource_lock = threading.Lock()
def increment():
global resource
for i in range(count):
resource_lock.acquire()
resource += 1
resource_lock.release()
def decerment():
global resource
for i in range(count):
resource_lock.acquire()
resource -= 1
resource_lock.release()
increment_thread = threading.Thread(target=increment)
decerment_thread = threading.Thread(target=decerment)
increment_thread.start()
decerment_thread.start()
increment_thread.join()
decerment_thread.join()
print(resource)
运行截图如下:
运行结果
从运行结果可以看到,不论我们运行多少次改代码,其resource
的值都为初始值0
, 这就是Lock()
的功劳,即它可以将某一时刻的访问限定在单个线程或者单个类型的线程上,在访问锁定的共享资源时,必须要现获取对应的锁才能访问,即要等待其他线程释放资源,即resource_lock.release()
当然为了防止我们对某个资源锁定后,忘记释放锁,导致死锁,我们可以利用上下文管理器管理锁实现同样的效果:
import threading
import time
resource = 0
count = 1000000
resource_lock = threading.Lock()
def increment():
global resource
for i in range(count):
with resource_lock:
resource += 1
def decerment():
global resource
for i in range(count):
with resource_lock:
resource -= 1
increment_thread = threading.Thread(target=increment)
decerment_thread = threading.Thread(target=decerment)
increment_thread.start()
decerment_thread.start()
RLock() 与Lock()的区别
我们需要知道Lock()
作为一个基本的锁对象,一次只能一个锁定,其余锁请求,需等待锁释放后才能获取,否则会发生死锁:
import threading
resource.lock = threading.lock()
resource = 0
resource.lock.acquire()
resource.lock.acquire()
resource += 1
resource.lock.release()
resource.lock.release()
为解决同一线程中不能多次请求同一资源的问题,python提供了“可重入锁”:threading.RLock
,RLock
内部维护着一个Lock
和一个counter
变量,counter
记录了acquire
的次数,从而使得资源可以被多次acquire
。
直到一个线程所有的acquire
都被release
,其他的线程才能获得资源 。用法和threading.Lock
类相同,即比如递归锁的使用:
import threading
lock = threading.RLock()
def dosomething(lock):
lock.acquire()
# do something
lock.release()
lock.acquire()
dosomething(lock)
lock.release()
以上就是Python并行编程多线程锁机制Lock与RLock实现线程同步的详细内容,更多关于Python锁Lock RLock线程同步的资料请关注易知道(ezd.cc)其它相关文章!