python可视化分析绘制带趋势线的散点图和边缘直方图

目录

一、绘制带趋势线的散点图

二、绘制边缘直方图

一、绘制带趋势线的散点图

实现功能:

在散点图上添加趋势线(线性拟合线)反映两个变量是正相关、负相关或者无相关关系。

实现代码:

import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action='once') plt.style.use('seaborn-whitegrid') sns.set_style("whitegrid") print(mpl.__version__) print(sns.__version__) def draw_scatter(file):     # Import Data     df = pd.read_csv(file)     df_select = df.loc[df.cyl.isin([4, 8]), :]     # Plot     gridobj = sns.lmplot(         x="displ",         y="hwy",         hue="cyl",         data=df_select,         height=7,         aspect=1.6,         palette='Set1',         scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))     # Decorations     sns.set(style="whitegrid", font_scale=1.5)     gridobj.set(xlim=(0.5, 7.5), ylim=(10, 50))     gridobj.fig.set_size_inches(10, 6)     plt.tight_layout()     plt.title("Scatterplot with line of best fit grouped by number of cylinders")     plt.show() draw_scatter("F:\数据杂坛\datasets\mpg_ggplot2.csv")

实现效果:

在散点图上添加趋势线(线性拟合线)反映两个变量是正相关、负相关或者无相关关系。红蓝两组数据分别绘制出最佳的线性拟合线。

二、绘制边缘直方图

实现功能:

python绘制边缘直方图,用于展示X和Y之间的关系、及X和Y的单变量分布情况,常用于数据探索分析。

实现代码:

import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action='once') plt.style.use('seaborn-whitegrid') sns.set_style("whitegrid") print(mpl.__version__) print(sns.__version__) def draw_Marginal_Histogram(file):     # Import Data     df = pd.read_csv(file)     # Create Fig and gridspec     fig = plt.figure(figsize=(10, 6), dpi=100)     grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)     # Define the axes     ax_main = fig.add_subplot(grid[:-1, :-1])     ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])     ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])     # Scatterplot on main ax     ax_main.scatter('displ',                     'hwy',                     s=df.cty * 4,                     c=df.manufacturer.astype('category').cat.codes,                     alpha=.9,                     data=df,                     cmap="Set1",                     edgecolors='gray',                     linewidths=.5)     # histogram on the right     ax_bottom.hist(df.displ,                    40,                    histtype='stepfilled',                    orientation='vertical',                    color='#098154')     ax_bottom.invert_yaxis()     # histogram in the bottom     ax_right.hist(df.hwy,                   40,                   histtype='stepfilled',                   orientation='horizontal',                   color='#098154')     # Decorations     ax_main.set(title='Scatterplot with Histograms \n displ vs hwy',                 xlabel='displ',                 ylabel='hwy')     ax_main.title.set_fontsize(10)     for item in ([ax_main.xaxis.label, ax_main.yaxis.label] +                  ax_main.get_xticklabels() + ax_main.get_yticklabels()):         item.set_fontsize(10)     xlabels = ax_main.get_xticks().tolist()     ax_main.set_xticklabels(xlabels)     plt.show() draw_Marginal_Histogram("F:\数据杂坛\datasets\mpg_ggplot2.csv")

实现效果:

到此这篇关于python可视化分析绘制带趋势线的散点图和边缘直方图的文章就介绍到这了,更多相关python绘制内容请搜索易知道(ezd.cc)以前的文章或继续浏览下面的相关文章希望大家以后多多支持易知道(ezd.cc)!

推荐阅读